Monday, November 15, 2010

ENDOCRINE GLAND

Endocrine gland


Endocrine glands are glands of the endocrine system that secrete their products, hormones, directly into the blood rather than through a duct. The main endocrine glands include the pituitary gland, pancreas, ovaries, testes, thyroid gland, and adrenal glands. The hypothalamus is a neuroendocrine organ. Other organs which are not so well known for their endocrine activity include the stomach, which produces such hormones as ghrelin.
Local chemical messengers, not generally considered part of the endocrine system, include autocrines, which act on the cells that secrete them, and paracrines, which act on a different cell type nearby.

Chemistry
Most hormones are steroid- or amino acid-based.[citation needed] Hormones alter cell activity by stimulating or inhibiting characteristic cellular processes of their target cells.
Cell responses to hormone stimulation may involve changes in membrane permeability; enzyme synthesis, activation, or inhibition; secretory activity; gene activation; and mitosis.
Second-messenger mechanisms employing intracellular messengers and transduced by G proteins are a common means by which amino acid–based hormones interact with their target cells. In the cyclic AMP system, the hormone binds to a plasma membrane receptor that couples to a G protein. When the G protein is activated it, in turn, couples to adenylate cyclase, which catalyzes the synthesis of cyclic AMP from ATP. Cyclic AMP initiates reactions that activate protein kinases and other enzymes, leading to cellular response. The PIP-calcium signal mechanism, involving phosphatidyl inositol, is another important second-messenger system. Other second messengers are cyclic GMP and calcium.
Steroid hormones (and thyroid hormone) enter their target cells and effect responses by activating DNA, which initiates messenger RNA formation leading to protein synthesis.[citation needed]
Target cell specificity
The ability of a target cell to respond to a hormone depends on the presence of receptors, within the cell or on its plasma membrane, to which the hormone can bind.
Hormone receptors are dynamic structures. Changes in number and sensitivity of hormone receptors may occur in response to high or low levels of stimulating hormones.
Blood levels of hormones reflect a balance between secretion and degradation/excretion. The liver and kidneys are the major organs that degrade hormones; breakdown products are excreted in urine and feces.
Hormone half-life and duration of activity are limited and vary from hormone to hormone.
Interaction of hormones at target cells
Permissiveness is the situation in which a hormone cannot exert its full effects without the presence of another hormone.
Synergism occurs when two or more hormones produce the same effects in a target cell and their results are amplified.
Antagonism occurs when a hormone opposes or reverses the effect of another hormone.
Control of hormone release
Endocrine organs are activated to release their hormones by humoral, neural, or hormonal stimuli. Negative feedback is important in regulating hormone levels in the blood.
The nervous system, acting through hypothalamic controls, can in certain cases override or modulate hormonal effects.
Major endocrine organs
Pituitary gland (hypophysis)
The pituitary gland hangs from the base of the brain by a stalk and is enclosed by bone. It consists of a hormone-producing glandular portion (anterior pituitary) and a neural portion (posterior pituitary), which is an extension of the hypothalamus. The hypothalamus regulates the hormonal output of the anterior pituitary and synthesizes two hormones that it exports to the posterior pituitary for storage and later release.
Four of the six adenohypophyseal hormones are tropic hormones that regulate the function of other endocrine organs. Most anterior pituitary hormones exhibit a diurnal rhythm of release, which is subject to modification by stimuli influencing the hypothalamus.
Somatotropic hormone or Growth hormone (GH) is an anabolic hormone that stimulates growth of all body tissues but especially skeletal muscle and bone. It may act directly, or indirectly via insulin-like growth factors (IGFs). GH mobilizes fats, stimulates protein synthesis, and inhibits glucose uptake and metabolism. Secretion is regulated by growth hormone releasing hormone (GHRH) and growth hormone inhibiting hormone (GHIH), or somatostatin. Hypersecretion causes gigantism in children and acromegaly in adults; hyposecretion in children causes pituitary dwarfism.
Thyroid-stimulating hormone (TSH) promotes normal development and activity of the thyroid gland. Thyrotropin-releasing hormone (TRH) stimulates its release; negative feedback of thyroid hormone inhibits it.
Adrenocorticotropic hormone (ACTH) stimulates the adrenal cortex to release corticosteroids. ACTH release is triggered by corticotropin-releasing hormone (CRH) and inhibited by rising glucocorticoid levels.

The gonadotropinsfollicle-stimulating hormone (FSH) and luteinizing hormone (LH) regulate the functions of the gonads in both sexes. FSH stimulates sex cell production; LH stimulates gonadal hormone production. Gonadotropin levels rise in response to gonadotropin-releasing hormone (GnRH). Negative feedback of gonadal hormones inhibits gonadotropin release.
Prolactin (PRL) promotes milk production in humans. Its secretion is prompted by prolactin-releasing hormone (PRH) and inhibited by prolactin-inhibiting hormone (PIH).
The neurohypophysis stores and releases two hypothalamic hormones:
  • Oxytocin stimulates powerful uterine contractions, which trigger labor and delivery of an infant, and milk ejection in nursing women. Its release is mediated reflexively by the hypothalamus and represents a positive feedback mechanism.
  • Antidiuretic hormone (ADH) stimulates the kidney tubules to reabsorb and conserve water, resulting in small volumes of highly concentrated urine and decreased plasma osmolality. ADH is released in response to high solute concentrations in the blood and inhibited by low solute concentrations in the blood. Hyposecretion results in diabetes insipidus.
Thyroid gland
The thyroid gland is located in the anterior throat. Thyroid follicles store colloid containing thyroglobulin, a glycoprotein from which thyroid hormone is derived.
Thyroid hormone (TH) includes thyroxine (T4) and triiodothyronine (T3), which increase the rate of cellular metabolism. Consequently, oxygen use and heat production rise.
Secretion of thyroid hormone, prompted by TSH, requires reuptake of the stored colloid by the follicle cells and splitting of the hormones from the colloid for release. Rising levels of thyroid hormone feed back to inhibit the pituitary and hypothalamus.
Most T4 is converted to T3 (the more active form) in the target tissues. These hormones act by turning on gene transcription and protein synthesis.
Graves' disease is the most common cause of hyperthyroidism; hyposecretion causes cretinism in infants and myxedema in adults.
Calcitonin, produced by the parafollicular cells of the thyroid gland in response to rising blood calcium levels, depresses blood calcium levels by inhibiting bone matrix resorption and enhancing calcium deposit in bone.
Parathyroid glands
The parathyroid glands, located on the dorsal aspect of the thyroid gland, secrete parathyroid hormone (PTH)[1], which causes an increase in blood calcium levels by targeting bone, the intestine, and the kidneys. PTH is the antagonist of calcitonin. PTH release is triggered by falling blood calcium levels and is inhibited by rising blood calcium levels.
Hyperparathyroidism results in hypercalcaemia and all its effects and in extreme bone wasting. Hypoparathyroidism leads to hypocalcaemia, evidenced by tetany and respiratory paralysis.
Pancreas
The pancreas, located in the abdomen close to the stomach, is both an exocrine and an endocrine gland. The endocrine portion (pancreatic islets) releases insulin and glucagon and smaller amounts of other hormones to the blood.
Glucagon, released by alpha (α) cells when glucose level in blood are low, stimulates the liver to release glucose to the blood.
Insulin is released by beta (β) cells when blood levels of glucose (and amino acids) are rising. It increases the rate of glucose uptake and metabolism by most body cells. Hyposecretion of insulin results in diabetes mellitus; cardinal signs are polyuria, polydipsia, and polyphagia.
Gonads
The ovaries of the female, located in the pelvic cavity, release two main hormones. Secretion of estrogens by the ovarian follicles begins at puberty under the influence of FSH. Estrogens stimulate maturation of the female reproductive system and development of the secondary sex characteristics. Progesterone is released in response to high blood levels of LH. It works with estrogens in establishing the menstrual cycle.
The testes of the male begin to produce testosterone at puberty in response to LH. Testosterone promotes maturation of the male reproductive organs, development of secondary sex characteristics, and production of sperm by the testes.
Pineal gland
The pineal gland is located in the diencephalon. Its primary hormone is melatonin, which influences daily rhythms and may have an antigonadotropic effect in humans.
Other hormone-producing structures
Many body organs not normally considered endocrine organs contain isolated cell clusters that secrete hormones. Examples include the heart (atrial natriuretic peptide); gastrointestinal tract organs (gastrin, secretin, and others); the placenta (hormones of pregnancy—estrogen, progesterone, and others); the kidneys (erythropoietin and renin); skin (cholecalciferol); and adipose tissue (leptin and resistin).
Developmental aspects of the endocrine system
Endocrine glands derive from all three germ layers. Those derived from mesoderm produce steroidal hormones; the others produce the amino acid–based hormones.
The natural decrease in function of the female’s ovaries during late middle age results in menopause. The efficiency of all endocrine glands seems to decrease gradually as aging occurs. This leads to a generalized increase in the incidence of diabetes mellitus and a lower metabolic rate.
Hormones
The endocrine system is a collection of glands that secrete chemical messages we call hormones. These signals are passed through the blood to arrive at a target organ, which has cells possessing the appropriate receptor. Exocrine glands (not part of the endocrine system) secrete products that are passed outside the body. Sweat glands, salivary glands, and digestive glands are examples of exocrine glands.
The roles of hormones in selecting target cells and delivering the hormonal message. Images from Purves et al., Life: The Science of Biology, 4th Edition, by Sinauer Associates (http://www.sinauer.com/) and WH Freeman (http://www.whfreeman.com/
Hormones are grouped into three classes based on their structure:
  1. steroids
  2. peptides
  3. amines

Steroids

Steroids are lipids derived from cholesterol. Testosterone is the male sex hormone. Estradiol, similar in structure to testosterone, is responsible for many female sex characteristics. Steroid hormones are secreted by the gonads, adrenal cortex, and placenta
Structure of some steroid hormones and their pathways of formation. Images from Purves et al., Life: The Science of Biology, 4th Edition, by Sinauer Associates (http://www.sinauer.com/) and WH Freeman (http://www.whfreeman.com/), used with permission.

Peptides and Amines

Peptides are short chains of amino acids; most hormones are peptides. They are secreted by the pituitary, parathyroid, heart, stomach, liver, and kidneys. Amines are derived from the amino acid tyrosine and are secreted from the thyroid and the adrenal medulla. Solubility of the various hormone classes varies.

Synthesis, Storage, and Secretion

Steroid hormones are derived from cholesterol by a biochemical reaction series. Defects along this series often lead to hormonal imbalances with serious consequences. Once synthesized, steroid hormones pass into the bloodstream; they are not stored by cells, and the rate of synthesis controls them.
Peptide hormones are synthesized as precursor molecules and processed by the endoplasmic reticulum and Golgi where they are stored in secretory granules. When needed, the granules are dumped into the bloodstream. Different hormones can often be made from the same precursor molecule by cleaving it with a different enzyme.
Amine hormones (notably epinephrine) are stored as granules in the cytoplasm until needed.

Evolution of Endocrine Systems | Back to Top

Most animals with well-developed nervous and circulatory systems have an endocrine system. Most of the similarities among the endocrine systems of crustaceans, arthropods, and vertebrates are examples of convergent evolution. The vertebrate endocrine system consists of glands (pituitary, thyroid, adrenal), and diffuse cell groups scattered in epithelial tissues.
More than fifty different hormones are secreted. Endocrine glands arise during development for all three embryologic tissue layers (endoderm, mesoderm, ectoderm). The type of endocrine product is determined by which tissue layer a gland originated in. Glands of ectodermal and endodermal origin produce peptide and amine hormones; mesodermal-origin glands secrete hormones based on lipids.

Endocrine Systems and Feedback Cycles | Back to Top

The endocrine system uses cycles and negative feedback to regulate physiological functions. Negative feedback regulates the secretion of almost every hormone. Cycles of secretion maintain physiological and homeostatic control. These cycles can range from hours to months in duration.
Negative feedback in the thyroxine release reflex. Image from Purves et al., Life: The Science of Biology, 4th Edition, by Sinauer Associates (http://www.sinauer.com/) and WH Freeman (http://www.whfreeman.com/), used with permission.

Mechanisms of Hormone Action | Back to Top

The endocrine system acts by releasing hormones that in turn trigger actions in specific target cells. Receptors on target cell membranes bind only to one type of hormone. More than fifty human hormones have been identified; all act by binding to receptor molecules. The binding hormone changes the shape of the receptor causing the response to the hormone. There are two mechanisms of hormone action on all target cells.

Nonsteroid Hormones

Nonsteroid hormones (water soluble) do not enter the cell but bind to plasma membrane receptors, generating a chemical signal (second messenger) inside the target cell. Five different second messenger chemicals, including cyclic AMP have been identified. Second messengers activate other intracellular chemicals to produce the target cell response.
The action of nonsteroid hormones. Images from Purves et al., Life: The Science of Biology, 4th Edition, by Sinauer Associates (http://www.sinauer.com/) and WH Freeman (http://www.whfreeman.com/), used with permission.

Steroid Hormones

The second mechanism involves steroid hormones, which pass through the plasma membrane and act in a two step process. Steroid hormones bind, once inside the cell, to the nuclear membrane receptors, producing an activated hormone-receptor complex. The activated hormone-receptor complex binds to DNA and activates specific genes, increasing production of proteins.
The action of steroid hormones. Images from Purves et al., Life: The Science of Biology, 4th Edition, by Sinauer Associates (http://www.sinauer.com/) and WH Freeman (http://www.whfreeman.com/), used with permission
.
The hypothalamus contains neurons that control releases from the anterior pituitary. Seven hypothalamic hormones are released into a portal system connecting the hypothalamus and pituitary, and cause targets in the pituitary to release eight hormones.
The location and roles of the hypothalamus and pituitary glands. Images from Purves et al., Life: The Science of Biology, 4th Edition, by Sinauer Associates (http://www.sinauer.com/) and WH Freeman (http://www.whfreeman.com/), used with permission.
Growth hormone (GH) is a peptide anterior pituitary hormone essential for growth. GH-releasing hormone stimulates release of GH. GH-inhibiting hormone suppresses the release of GH. The hypothalamus maintains homeostatic levels of GH. Cells under the action of GH increase in size (hypertrophy) and number (hyperplasia). GH also causes increase in bone length and thickness by deposition of cartilage at the ends of bones. During adolescence, sex hormones cause replacement of cartilage by bone, halting further bone growth even though GH is still present. Too little or two much GH can cause dwarfism or gigantism, respectively.
Hypothalamus receptors monitor blood levels of thyroid hormones. Low blood levels of Thyroid-stimulating hormone (TSH) cause the release of TSH-releasing hormone from the hypothalamus, which in turn causes the release of TSH from the anterior pituitary. TSH travels to the thyroid where it promotes production of thyroid hormones, which in turn regulate metabolic rates and body temperatures.
Gonadotropins and prolactin are also secreted by the anterior pituitary. Gonadotropins (which include follicle-stimulating hormone, FSH, and luteinizing hormone, LH) affect the gonads by stimulating gamete formation and production of sex hormones. Prolactin is secreted near the end of pregnancy and prepares the breasts for milk production. .

The Posterior Pituitary

The posterior pituitary stores and releases hormones into the blood. Antidiuretic hormone (ADH) and oxytocin are produced in the hypothalamus and transported by axons to the posterior pituitary where they are dumped into the blood. ADH controls water balance in the body and blood pressure. Oxytocin is a small peptide hormone that stimulates uterine contractions during childbirth.

Other Endocrine Organs | Back to Top

The Adrenal Glands

Each kidney has an adrenal gland located above it. The adrenal gland is divided into an inner medulla and an outer cortex. The medulla synthesizes amine hormones, the cortex secretes steroid hormones. The adrenal medulla consists of modified neurons that secrete two hormones: epinephrine and norepinephrine. Stimulation of the cortex by the sympathetic nervous system causes release of hormones into the blood to initiate the "fight or flight" response. The adrenal cortex produces several steroid hormones in three classes: mineralocorticoids, glucocorticoids, and sex hormones. Mineralocorticoids maintain electrolyte balance. Glucocorticoids produce a long-term, slow response to stress by raising blood glucose levels through the breakdown of fats and proteins; they also suppress the immune response and inhibit the inflammatory response.


No comments:

Post a Comment